
THE FUTURE OF
SCALABILITY
YOUR GUIDE TO TRANSITIONING FROM
MONOLITH TO COMPOSABLE STACKS

E b o o k

CONTENTS

4 The Hidden Costs of Traditional CMS: How They
Shackle Your Business

5 Monolith Suites vs Composable Stacks: Unraveling
the Battle of Software Architecture

9 Navigating Migration: Choosing the right strategy
to migrate from Monolith to Headless CMS

7 Benefits of Composable Architecture

11 Points to Consider While Navigating the Path from
Monolith Suites to Composable Stacks

13 Overcoming Challenges with Best
Migration Practices

15 Embark on Your Journey to Composable CMS
Excellence Now!

16 About Icreon

EMBRACE THE FUTURE WITH COMPOSABLE
CMS INNOVATION

3

BREAK FREE FROM
MONOLITHS

52% of business
leaders express
confidence that
using headless

CMS would
enhance their

website
performance.1

Enterprises running on monolith CMS systems

encounter a host of challenges that hinder their

digital growth and agility. One of the most

significant hurdles is the lack of flexibility.

Monolith CMS architectures often bundle various

functionalities into a single, unwieldy structure,

making it challenging to update, scale, or

innovate swiftly. This rigidity extends to

development teams struggling with

collaboration, as changes in one aspect of the

system can disrupt the entire application.

Moreover, as enterprise needs evolve, monolith

CMS systems become harder to adapt and

integrate with modern technologies. They tend

to create bottlenecks, leading to slower

time-to-market for new features or

applications. Maintenance also becomes

complex, as any update can inadvertently

impact other parts of the monolith, risking

system stability.

In the rapidly changing digital landscape,

enterprises require agility to stay competitive.

Monolith CMS limitations hinder that agility,

resulting in missed opportunities, frustrated

development teams, and slower innovation

cycles.

Transitioning to a composable architecture

addresses these challenges, unlocking the

potential for modular development, rapid

iteration, and seamless integration across

diverse technology stacks.

The Hidden Costs of Traditional
CMS: How They Shackle Your
Business

4

https://www.icreon.com/en-in/insights/future-proofing-your-business-with-headless-cms
https://www.icreon.com/en-in/insights/future-proofing-your-business-with-headless-cmshttps://www.icreon.com/en-in/insights/future-proofing-your-business-with-headless-cms

Monolith Suites vs Composable
Stacks: Unraveling the Battle of
Software Architecture

Software architecture is a critical decision that

can shape the success and scalability of any

application. Traditionally, monolith suites have

been the go-to choice, o�ering a unified

codebase encompassing all components.

However, as applications have become more

complex and the demand for flexibility and

scalability has grown, composable stacks have

emerged as a compelling alternative.

Let's delve deeper into the concepts of suites

and stacks to gain a better understanding.

Monolith Suites refers to a software architecture

pattern where an entire application's

functionalities are tightly integrated and

contained within a single, large codebase. In

this approach, all components, modules, and

services of the application are interconnected

and run as a single unit. This type of architecture

is called a "monolith" due to its unified and

self-contained nature.

Composable stacks, also known as composable

architectures or composable systems, are a

modern software development approach that

emphasizes modularity, flexibility, and

scalability. In a composable stack, applications

are built as a collection of loosely coupled

microservices, each responsible for specific

functionalities.

These microservices communicate through

well-defined APIs, allowing them to work

together as a cohesive system.

5

https://www.icreon.com/en-in/insights/rise-of-low-code-platforms-in-software-development
https://www.icreon.com/en-in/insights/rise-of-low-code-platforms-in-software-development
https://www.icreon.com/en-in/insights/rise-of-low-code-platforms-in-software-development

Monolith suites boast the advantage of simplified testing and shared state, making them easier to

manage for smaller projects. Yet, as the application expands, maintaining and testing a monolith suite

can become a daunting task, with a single change potentially requiring extensive testing.

The global CMS market was valued at
around $36 billion in 2018 and is expected
to generate around $123.5 billion by 2026,
which is a very healthy compound annual
growth rate (CAGR) of nearly 17 percent.

6

Easy to understand & develop

Faster development

Flexible & scalable

Omnichannel support

Ease of testing

MACH architecture

Ease of technology integration

Ease of maintenance & upgrades

Monolith Suites Composable Stacks

- Contentstack https://www.contentstack.com/blog/all-about-headless/state-c
ms-industry-content-management-statistics

A composable architecture, with its modular and flexible design, provides a robust foundation for

building scalable and adaptable systems. This versatility not only enhances e�ciency and

cost-e�ectiveness but also empowers organizations to stay ahead in the ever-evolving landscape of

technology and innovation. Let’s explore how?

7

Benefits of Composable
Architecture

Users API
Gateway

Moreover, modular architecture improves testability, quality assurance, and overall system stability,

making it an invaluable approach in building robust and adaptable software systems. However, the

architecture understanding, development, 3rd party integration complexity, and the challenges of

managing a distributed system introduce new testing considerations. To overcome these challenges,

you can go through free composable blueprint on unlocking the true potential of composability.

8

Composable stacks o�er the promise of independent testing, better isolation,
and technology flexibility. Each service within the stack can be tested
separately, enabling faster iterations and pinpointing the source of issues.

Collaboration among teams is facilitated, as parallel development becomes
possible, and integration with external components is simplified.

By breaking down complex systems into independent and reusable
modules, it allows for increased flexibility and agility. Developers can
modify and update specific modules without impacting the entire system,
enabling faster adaptation to changing requirements.

The reusability of modules saves development time and enhances
maintainability, as changes and updates are isolated to specific modules.

Additionally, modular architecture promotes scalability and optimal
performance by allowing individual components to be scaled
independently, ensuring e�cient resource utilization.

1

2

3

4

5

https://www.icreon.com/insights/downloadab
le-insights/composable-blueprint

Before you kick-start the migration process,

looking for di�erent migration strategies that

may align with your end goals is imperative.

ensuring that the existing functionalities are

maintained as the migration progresses.

Navigating Migration: Choosing
the Right Strategy to Migrate
from Monolith to Headless CMS

An incremental approach to migration involves

breaking down the process of moving from a

legacy system to a composable system into

smaller, manageable steps. Instead of attempt-

ing a full-scale replacement all at once, an

incremental approach focuses on migrating or

replacing specific components, features, or

modules in a step-by-step manner.

For instance, Strangler application pattern is an

incremental approach where you build and

deploy the individual applications for each

function that you’ve mapped and grouped. This

approach allows you to deliver consistent UX

during migration by creating a link between old

and new CMS via a router. If the user requests a

function that is not yet migrated, the router will

direct it to the old monolith system and if the

function is successfully migrated to the new

CMS, the router will direct it to the new one.

This method allows for a more controlled and

less disruptive transition, reducing risks and

INCREMENTAL APPROACH

9

As the name suggests, this approach supports

your ongoing and constant needs of adding

new features and functionalities. For instance, if

you’re migrating from monolith to headless CMS

and during the migration you bring in additional

features to your system, you can simply add it to

the standalone application instead of the whole

monolith codebase.

For instance, the DDD or Domain Driven Design

approach is a perfect example of an agile or

flexible strategy for your migration from monolith

to headless CMS. It emphasizes understanding

the core domains of the business, enabling

e�ective decomposition into microservices. This

method ensures a seamless transition while

aligning technology with business goals and

enhancing flexibility in the new architecture.

AGILE APPROACH

10

The parallel approach in migration is di�erent

from the above-mentioned approaches as it

does not abandon the monolith CMS right away

after migration. In fact, new composable

components are developed alongside existing

systems. This approach allows businesses to

compare the performance of each feature and

function migrated to the new CMS with the old

one.

The major purpose of this approach is to test

the success of the migration process, i.e.,

whether you’ve achieved your goals or not.

Gradually, the new components take over,

reducing risk and allowing for a controlled

transition while ensuring uninterrupted

operations and user experience.

PARALLEL APPROACH

11

Start by outlining your goals. Are there essential

functions or features that require scaling to

accommodate customer growth? Does your

digital presence hinge on a specific tech stack

incompatible with a traditional CMS? Is reducing

development time and hastening your time to

market a priority? Precisely identifying the

business needs that this transition aims to fulfill

is a crucial initial step.

If your existing monolith architecture is

incapable of achieving all these goals, you’re on

the right track to migrate. Now, you need to

make sure you’ve the right team of developers

and testers who are well-versed in composable

architecture transition and everything that

occurs after.

IDENTIFY GOALS

In every monolith architecture, multiple functions

are weaved together, or each function depends

on other functions. On the contrary, t is

well-defined and has functions related to a

certain process that are contained together in

tech stacks. Therefore, it is important to map

the functions in your existing monolith codebase

and group them into logical units related to

specific areas of your business.

For instance, you need to map and group all the

functions of your marketing services into one

unit, while functions supporting other areas

should be grouped to their respective units.

Doing this will help you perform migration easily.

MAPPING & GROUPING

Once you’ve mapped and grouped functions

into units, you need to start o� with a pilot

transformation that involves migrating a unit of

the monolith into a microservice instead of

migrating the whole system. Doing so will help

you gain insights into challenges and 5 benefits

of transitioning to a composable stack without

disrupting the entire system.

START OFF WITH A PILOT
TRANSFORMATION

Transitioning from a monolith suite to a

composable stack can be a challenging but

rewarding process. Composable stacks allow

for greater flexibility, scalability, and agility in

software development. When evaluating

existing monolith suites for the transition,

consider the following steps:

Points to Consider While
Navigating the Path from
Monolith Suites to Composable
Stacks

https://www.icreon.com/en-in/insights/di
gital-experience-with-composable-dxps

https://www.icreon.co
m/en-in/insights/digit
al-experience-with-co
mposable-dxps

https://www.icreon.com/en-in/insights
/understanding-multisite-architecture

https://www.icreon.com/en-in/insights/understanding-multisite-architecture

Next step is to assemble small, cross-functional

team consisting of experienced developers,

testers, DevOps engineers, and domain experts

who understand the intricacies of the existing

monolith and have a solid grasp of the target

composable stack technologies. By deploying a

small, agile team, organizations can quickly

respond to challenges and adapt to the

complexities of transitioning from monolith

suites to composable stacks.

Make sure the team follows agile methodologies

during pilot transformation that can accept or

reject changes required at any time. Agile

methodologies enable incremental progress

and frequent feedback, leading to more

successful outcomes and reduced risks during

the migration process.

reject changes required at any time. Agile

methodologies enable incremental progress

and frequent feedback, leading to more

successful outcomes and reduced risks during

the migration process.

DEPLOY A SMALL TEAM TOGETHER WITH
AGILE METHODOLOGIE

This is a crucial step as it decides the success of

the technology transition. You need to choose

the appropriate technologies and tools for the

pilot project. Ensure that the selected

technology stack aligns with the organization's

long-term vision for the composable stack.

However, avoid introducing unnecessary

complexities during the pilot phase by keeping

the technology choices manageable.

Consider factors like scalability, performance,

security, team expertise, and budget

constraints. Identify the key pain points in the

existing monolith suite that need to be

addressed with the new technology stack. Also,

you need to look for monitoring and

observability tools available for the chosen

technology stack. E�ective monitoring will help

you track the performance, health, and logs of

microservices.

SELECT THE RIGHT TECHNOLOGY STACK

Next step is to assemble small, cross-functional

team consisting of experienced developers,

testers, DevOps engineers, and domain experts

who understand the intricacies of the existing

monolith and have a solid grasp of the target

composable stack technologies. By deploying a

small, agile team, organizations can quickly

respond to challenges and adapt to the

complexities of transitioning from monolith

suites to composable stacks.

Make sure the team follows agile methodologies

during pilot transformation that can accept or

DEPLOY A SMALL TEAM TOGETHER WITH
AGILE METHODOLOGIE

Once the pilot transformation is successful, pick

another unit and repeat the process until whole

migration from monolith suites to composable

stacks is completed.

REPEAT PROCESS UNTIL FINISHED

12

The transition from monolith suites to composable stacks represents a fundamental shift in how

organizations approach software development and system architecture. However, this transformation

is not without its challenges, particularly in terms of cultural, organizational, security, and governance

aspects. Below we will explore each of these and provide strategies to address these e�ectively.

CULTURAL & ORGANIZATIONAL

Overcoming Challenges with Best
Migration Practices

Moving away from established monolith suites

can be met with skepticism and fear of the

unknown. To address this, it's crucial to foster a

culture of continuous learning and improvement.

Engage employees in open discussions about

the benefits of composable stacks and how it

aligns with the organization's long-term goals.

Encourage feedback and provide training and

workshops to help teams develop the necessary

skills to work with the new technology

e�ectively.

RESISTANCE TO CHANGE

When transitioning to composable stacks,

evaluating legacy system integration within

monolith suites is pivotal. It necessitates a

strategic approach to seamlessly incorporate

existing infrastructure into the evolving

ecosystem, optimizing both functionality and

e�ciency. These include reconciling disparate

data formats, ensuring seamless communication

between old and new components, and

addressing compatibility issues.

LEGACY SYSTEM INTEGRATION

In monolith suites, teams often work in silos,

focusing on specific modules or components.

Transitioning to composable stacks requires

breaking down these silos and fostering

cross-functional collaboration. Encourage

regular team interactions, conduct joint

planning sessions, and implement agile

methodologies that promote communication

and knowledge sharing across departments.

SILOED MINDSET Resource allocation under Cultural &

Organizational aspects is about aligning

resources with an organization's values and

strategic goals. It involves transparent, inclusive

decision-making, smart financial planning,

talent management, and technology

investments. Adapting to change and

measuring performance are key to fostering a

culture that drives success.

RESOURCE ALLOCATION

13

https://www.icreon.com/en-in/insights/site
core-cdp-for-driving-digital-experiences

https://www.icreon.com/en-in/insights/legacy-system-migration-to-the-cloud

SECURITY AND GOVERNANCE

Composable stacks often involve the exchange

of data between various microservices and

components. This increased communication

introduces potential vulnerabilities, such as data

breaches, unauthorized access, and data leaks.

Implement robust authentication and

authorization mechanisms to control data

access strictly. Use encryption to protect

sensitive data during transmission and storage.

DATA VULNERABILITY

Transitioning to composable stacks doesn't

exempt organizations from compliance and

regulatory requirements. On the contrary, it may

introduce additional complexities. Conduct a

thorough assessment of the applicable

regulations, such as GDPR, HIPAA, or PCI DSS,

and ensure that your composable stack

architecture complies with all necessary

standards. Implement data anonymization and

pseudonymization techniques where required to

protect user privacy.

COMPLIANCE & REGULATORY
REQUIREMENTS

Composable stacks encourage frequent

updates and changes to individual services.

Managing these changes e�ectively becomes

critical to ensure stability and security.

Implement a robust change management

process, version control, and deployment

strategies to track changes and roll back if

necessary. Employ continuous integration and

continuous deployment (CI/CD) pipelines to

automate these processes and reduce human

errors.

CHANGE MANAGEMENT & VERSION
CONTROL

Application Programming Interfaces (APIs) play

a vital role in composable stacks, facilitating

communication between di�erent services.

Poorly secured APIs can be exploited by

malicious actors to gain unauthorized access to

the system. Ensure that all APIs are properly

secured with authentication, authorization, and

rate limiting to prevent API abuse and potential

denial-of-service (DoS) attacks.

API SECURITY

Containers are commonly used in composable

stacks to package applications and their

dependencies. However, they can be

susceptible to security issues if not adequately

protected. Use trusted container images,

regularly update dependencies, and implement

container isolation mechanisms like Docker

security best practices and Kubernetes Pod

Security Policies.

CONTAINER SECURITY

14

https://www.icreon.com/en-in/services/digital-transformation-services/change-management-consulting
https://www.icreon.com/en-in/services/digit
al-transformation-services/change-manage
ment-consulting

In a world spinning faster than ever, bidding adieu to monolith suites and embracing composable

stacks isn't just a change—it's a daring leap into the future of business. This transition holds the key to

unlocking a realm of unparalleled flexibility, rocket-like scalability, and streamlined e�ciency, lighting

the way for innovation and a fierce competitive edge. Yet, we empathize with the thought of stepping

into the unknown, where challenges and intricacies abound.

At Icreon, we're your trusted partner in this transformative journey. With our Composable CMS

consulting, engineering, and development services, we o�er you the guidance and expertise needed to

navigate the complexities of composable stacks. Together, we can transform your digital landscape,

elevate customer experiences, and drive growth. Talk to our composable experts to start your

composable journey.

Embark on Your Journey to
Composable CMS Excellence
Now!

15

https://www.icreon.com/en-in/contact-us

Founded in 2000, Icreon has been collaborating with businesses of all sizes to make a new meaningful

impact in a new age of digital maturity, resulting in more e�cient and powerful brands. We help busi-

nesses define the future of their customer experiences and then develop personalized solutions for

them by merging technology engineering solutions and the power of digital. These digital-first solutions

not only result in commerce transactions, but also enrich our ongoing relationships with our clients.

Headquartered in New York City, Icreon's global capabilities expand across Washington D.C., Philadel-

phia, New Delhi, and Pune o�ces. With a dedicated team of over 350 technology specialists across the

globe, our team supports clients at companies such as GSK, Novartis, Jazz Pharmaceuticals, New York

Road Runners, and Lincoln among others. We blend the art of digital transformation and engineering

solutions to generate ROI for brands for “what comes next.”

About Icreon

 www.icreon.com
 www.icreon.com
 www.icreon.com
 www.icreon.com
 www.icreon.com
 www.icreon.com www.icreon.com

 www.icreon.com
 www.icreon.com
 www.icreon.com
 www.icreon.com
 www.icreon.com
 www.icreon.com www.icreon.com

 www.icreon.com
 www.icreon.com
 www.icreon.com
 www.icreon.com
 www.icreon.com
 www.icreon.com www.icreon.com

EXPLORE MORE

